Duration: 3 Hrs Maximum marks: 80

Note: All Questions are compulsory

Use of simple calculator is allowed

Figure at right indicate maximum marks

Q.1 Attempt any 7 [2 marks each]

[14]

- If $y=x^5$, then $y_5 = ?$ (i)
 - (a)20
- (b) 60
- (c) 120
- (d) 150
- (ii) The value of $\int_1^3 (x^2) dx$ is:
 - (a)26/3 (b)27/3 (c) 6 (d) 5
- The differential equation for the function $y^2 = 4ax$ is

 (a) $2x\frac{dy}{dx} y = 0$ (b) $2x^2\frac{dy}{dx} y = 0$ (c) $2x\frac{dy}{dx} + y = 0$ (d) $2x\frac{dy}{dx} y^2 = 0$ (iii)

- The inverse of the matrix $A = \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 \\ 6 & -7 \end{bmatrix}$ then A 4B + 7I (where I is the unit matrix of order 2):
 - (a) $\begin{bmatrix} 6 & -18 \\ -19 & 39 \end{bmatrix}$ (b) $\begin{bmatrix} 6 & -18 \\ 19 & 39 \end{bmatrix}$ (c) $\begin{bmatrix} 6 & 18 \\ -19 & 39 \end{bmatrix}$ (d) $\begin{bmatrix} 6 & 18 \\ 19 & 39 \end{bmatrix}$

- (v) If Median and S.D are 50 and 20 respectively. If each item is increased by 5 then the Median and S.D will be;
 - (a) 50,20
- (b) 45,20
- (c) 55,25
- (d) 55,20
- If 75% of the items lies above 40 and 75% of the items lies below 60, then co-efficient of (vi) Quartile deviation is
 - (a) 0.46 (b) 0.64
- (c) 0.04
- (d) 0.20
- Two dice are thrown simultaneously. What is the probability of obtaining sum of the numbers (vii) less than 11.
 - (a) 17/18
- (b) 1/12
- (c) 11/12 (d) None of these
- (viii) For a Poisson variate X, P(X=1) = P(X=2). Find P(X=4)

 - (a) 0.090224 (b) 0.05288
- (c) 0.021100
- (d) 0.07684
- The table value for a Normal distribution, $P[Z \ge 1.04] = 0.14917$ then $P[Z \le 1.04] = is$; (ix)
 - (a) 0.35083 (b) 0.85083 (c) 0.29834
- (d) 0. 64917

Attempt any 1: (b)

[1]

- If $A = \begin{bmatrix} 7 & 3 & 4 \\ -2 & -1 & 0 \\ 5 & 3 & 6 \end{bmatrix}$, then $(A^T)^T$ is _____. (x) (a) A (c) $A.A^T$ [×] (d) 0.
- (xi) To test the hypothesis of equality among several variables the best measure is:
- (a) Z-test (b) t-test (c) Chi-square test
- (d) ANOVA.

72671

			, 4 (A) (A)
Q2.	(a) (i) (ii) (iii)	Attempt any two (4 marks each) Find the N th derivative of $y = e^x . cos x . sin 3x$ State the Lagrange's Mean Value theorem. Use it to verify for $f(x)=x^2-5x+6$ in [2,4] Using Maclaurin's series, give the expansion of $f(x)=sin x$	[8]
	(b) (i) (ii)	Attempt any one (3 marks) For $f(x) = [\frac{1}{x^2 - 1}]$, find y_n . Later, find y_4 (i.e n=4) at x=0. Verify Rolle's theorem for the function $f(x)=x^2-3x+2$ in [1,2]	[3]
Q3.	(a) (i) (ii) (iii)	Attempt any two (4 marks each) Evaluate: $\int_0^{\frac{\pi}{2}} \sin^4 x \ dx$ Evaluate: $\int e^x \cos x \ dx$. Find the volume generated by revolving the arc of the curve $y = \sin x$, between the $x=0$ and $x=\pi$	(E) (8)
	(b)	Attempt any one (3 marks)	[3]
	(i)	Evaluate: $I = \int \frac{e^x}{16 - e^{2x}} dx$.	
	(ii)	Find the length of the curve $x = a \sin\theta$, $y = a \cos\theta$ from $\theta = 0$ to $\theta = \frac{\pi}{4}$	
Q4.	(a)	Attempt any one (4 marks each)	[4]
	(i)	Solve $(1-x)$ dy $-(1+y)$ dx = 0. Also find the particular solution, if y = 2 when x = 1.	
	(ii)	Solve the following homogeneous differential equations: $\frac{dy}{dx} = \frac{xy+y^2}{x^2+xy}$	
	(b) (i) (iii)	Attempt any one(3 marks) Form the differential equation for $y = A \cos x + B \sin x$, where A and B are constants. Solve $ydx - xdy = 0$	[3]
Q5.	(a) (i)	Attempt any one (4 marks each) By using the Adjoint method, find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$	[4]
1000 1000 1000 1000	(ii)	Solve by using the properties of determinant: $\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix} = 0$	
	(b) (i)	Attempt any one(3 marks) Find the Rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	[3]
	(ii)	If $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ then find $A^2 - 2B + I$.	

72671

Q6. (a) Attempt any one (4 marks each)

[4]

(i) Calculate the median income from the following data:

Income (in '000 Rs)	20-30	30-40	40-50	50-60	60-70	70-80	80-90
Income	10	15	30	50	35	15	5

(ii) The following data gives the weight distribution of students in a class. Find the average Weight of the students .

Wt.(in kgs.)	41	42	43	44	45	46	47	48
No. of students	3	6	8	15	17	12	5	4

(b) Attempt any one(3 marks)

[3]

- (i) The A.M of 50 observations was found to be 115. It was later noticed that the observation 78 was misread as 87. Find the correct value of the A.M.
- (ii) The following are the marks of three students A, B,C in 4 subjects P,Q,R and S respectively. The weights of the subjects are given. Decide which of the three students is the best.

	Р	Q	R	S
Marks of A	28	30	40	20
Marks of B	35	25	20	15
Marks of C	30	35	30	20
Weight 0	4	3	20	1

Q7. (a) Attempt any two (4 marks each)

[8]

(i) The no. of runs scored by two cricketers A and B in 10 innings of 5 test matches are shown below; Find which cricketer is more consistent.

		90	2 2 - / - /		102	V	() A/	1 / 2 / 4 - 0		
В	40	35	60	62	58	76	42	30	30	20

- (ii) Hundred students appeared for two examinations. 60 passed the first, 50 passed the second and
 - 30 passed in both. Find the probability that student selected at random
 - (a) Passed in at least one examinations.
 - (b) Failed in both the examinations.
- (iii) It is stated that optical lenses supplied by a manufacturer are found to be defective follows Poisson distribution, with mean 4. What is the probability that form a random sample of lenses (1) 3 or more are defective. (2) at the most 2 lenses are defective?

(b) Attempt any one(3 marks)

[3]

(i) Find k and hence find the expected value of a random variable x and variance for the probability distribution:-

X	2	3	4	5
P(x)	0.1	8 k	0.4	0.3

72671

(ii) Calculate M.D. from mean and corresponding coefficient of M.D. for the following data representing daily wages (in Rs.) of workers in a factory:

Daily Wages(in Rs.)	63-67	68-72	73-77	78-82	83-87	88-92	93-97
No. of Workers	2	22	19	14	9	4-0	3

Q8. (a) Attempt any two (4 marks each)

[8]

(i) In a cross-breeding experiment with plants at certain species 240 offspring were classified in 4 classes w.r.t the structure of their leaves as follows:

Class	I	П	Ш	IV	Total
Frequency	21	127	40	52	240

According to theory of heredity, the probabilities of the four classes should be in the ratio 1:9:3:3. Are these data consistent with theory? (Given that the table value of \mathbb{Z}^2 with 3 d.f at 5% l.o.s. is 7.815)

- (ii) In an examination in Psychology 12 students in one class had a mean grade of 78 with a standard deviation of , while 15 students in another class had a mean grade of 74 with a standard deviation of 8. Is there a significant difference between the means of the two groups? (Given: t = 2.060 at 5% level of significance and 25 degrees of freedom.)
- (iii) Following are weekly sales records (in '000s of Rs.) of 3 salesmen A,B,and C of a company during 15 sales calls:-

Α	25	30	36	38	31
В	31	39	38	42	35
С	24	30	28	25	28

Using ANOVA technique, determine whether Sales of the three salesmen are different. Given value of F for (2,12) d.f. at 5% level of significance is 3.89

(b) Attempt any one(3 marks)

[3]

- (i) Two random samples of 10 & 14 observations were drawn. The sum of squares of deviations from means for each sample were 130.5 & 148.5 resp. Test whether the difference is significant at 5% l.o.s. [$F_{0.05}=(9,13)=2.71$]
- (ii) From a random sample of size n=9 is drawn from normal population gave the following observations:

72, 74, 68, 70, 61, 63, 69, 73 and 71.

To test: H_0 : $\sigma^2 = 36$ V_s H_1 : $\sigma^2 \neq 36$ (Use at 10% l.o.s.) (Given that table value of χ^2 with 8 d.f at 5% l.o.s. is 2.306)