(3 Hours)

N.B.: 1. All questions are compulsory

- 2. Answer all sub questions together
- 3. Figures to right indicate full marks

Q1 a. Match the following in terms of type of reaction involved.

(04)

Total Marks: 80

Sr.	Name of the reaction	Sr.	Types of reaction
No		No.	
1.	Oxymercuration-	a.	Nucleophilic substitution at C=O with loss
	Demercuration		of carbonyl oxygen
2.	Imine formation	b.	Electrophilic aromatic substitution reaction
3.	Friedel Craft acylation	c.	Electrophilic addition to alkene
4.	Cannizzaro reaction	d.	Nucleophilic addition to C=O

Q1b. Answer the following questions (Any Eight)

(16)

1 Identify A and B for following reaction.

- 2 Write structure of tetrahedral intermediates formed for following reactions.
 - i) Acetaldehyde with water
 - ii) Acetyl chloride with hydroxyl ion
- 3 Identify whether following compounds are enolizable or non-enolizable when treated in presence of base.

- 4 Justify using suitable examples: acid or base catalyst increase rate of equilibrium of hemiacetals but does not shift position of equilibrium.
- 5 Predict the product for following molecule at specified reaction conditions

6. In the reaction given below, predict which of the following reaction is feasible?

- 7. Draw a picture depicting the HOMO and LUMO of formaldehyde.
- 8. Aldehydes are more reactive than ketones in nucleophilic addition reaction; account for the same.
- 9. Using phenol, suggest a suitable scheme for synthesis of 5-nitrosalicylaldehyde.

Q2 a. Give the mechanism for the following reactions (Any three):

(06)

- i) Kolbe reaction
- ii) Claissen condensation
- iii) Mannich reaction
- iv) Cannizzaro reaction

b Answer the following questions

(06)

- 1. Identify product obtained when bromobenzene is treated with:
- i) Conc. H₂SO₄
- ii) NaOH at high temperature and pressure
- 2. o-Bromoanisole and m-bromoanisole yield m-anisidine by reaction with NaNH₂ and Liq. NH₃. Justify

69738

3. Identify A and B from the following reaction

$$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

Q3 a. Compare the reactivity of amides and acid chlorides (04)

b. Suggest suitable reagents to obtain the following products and comment on stereochemistry of addition (04)

- 1) 2,3-Dibromobutane from 2-butene
- 2) 2-methylcyclopentanol from 1-methylcyclopentene
- c. Attempt the following conversions (Any four):

(04)

- 1) Acetaldehyde to 2-butenal
- 2) Benzene to p-nitrotoluene
- 3) 2-methyl-2-butene to 2-methyl-2-butanol 4) Phenol to 2-hydroxy benzaldehyde
- 5) Acetophenone to phenylacetate

Q4 a. Using organomagnesium and organolithium compounds, suggest suitable schemes for synthesis of 2-Phenyl-2-butanol and n-Pentanol (04)

- b. i) Give the mechanism for sulfonation of benzaldehyde
- (02)
- ii) Indicate the position of nitration of 2-chloroaniline and designate whether the starting aromatic compound is activated or deactivated relative to benzene (02)
- c. Identify A, B, C and D (04)

Q 5 a. Acid catalyzed hydrolysis of ester is reversible while base catalyzed is irreversible. Justify with mechanism. (04)

OR

a. Answer the questions pertaining to following reaction:

- i) Predict the product of reaction.
- ii) Write the type of reaction involved.
- iii) Write in detail mechanism for the same.
- b. Compound A (C₇H₅O₄N) reacts with POCl₃ to give compound B (C₇H₄O₃NCl). Compound B is reduced with Sn/HCl to compound C (C₇H₆ONCl). Compound C on treatment with ammonia gives D (C₇H₈ON₂). Identify A, B, C and D. (04)
- c. Give the products of the following reactions (Any four): (04)

ii) O3, Me2S

iii) EtCOOCH₂-(CH₂)₃-CH₂-COOEt C₂H₅ONa

iv)
$$H$$
 + 2 EtOH H^+

69738

Paper / Subject Code: 69101 / Organic Chemistry-II

Q.6. a. Propose mechanisms for synthesis of *syn* and *anti* diol from 2-hexene using suitable reagents. (04)

b. Identify A, B, C and D

$$\begin{array}{c}
B \\
KMnO_4 \\
HIO_4
\end{array}$$

$$A \xrightarrow{HBr, H_2O_2} \xrightarrow{Br_2, H_2O} C$$

$$\begin{array}{c}
H_2O, H^+ \\
\Delta
\end{array}$$

c. Predict whether the said order of reaction conditions would yield the desired product. Suggest suitable modifications, if necessary: (04)
