Q.P. Code :27542

[Time: Three Hours] [Marks:70] Please check whether you have got the right question paper. N.B: 1) Attempt all questions. 2) Draw neat diagrams wherever necessary. **1.** a. Write a note on liquid crystals and explain their significance. 3 2 b. Define specific Rotation and give applications of Polarimeter. c. The boiling point of a solution containing 0.20g of substance X in 20g of ether is 0.17k 3 higher than that of pure ether. Calculate the molecular mass of X. Boiling constant of ether per 1kg is 2.16k. d. Define the following: 4 i) Intensive property ii) Closed system iii) Isobaric process iv) Isothermal process e. State and explain Faraday's laws of electrolysis. 3 2. a. Explain Linde's method for Liquefaction of gases. 4 a. Explain the principle and method of liquefaction of gases by Claude's method. b. Define Dipole moment. Write its applications. 3 c. Derive the relation between C_p and C_v. 4 3. a. Explain Raoult's law and discuss with the help of diagram positive and negative deviation 4 from Raoult's law. b. Define entropy and give different statements of Second law of thermodynamics. 4 b. An engine operating between 200°c and 75°c takes 500J heat from a high temperature reservoir. Assuming that there are no frictional losses, calculate the work that can be done by this engine. c. Explain equivalent conductance of weak electrolyte at infinite dilution. 3 a. What are ideal gases and real gases? Describe the deviations of real gases from the ideal gas 4 equation. b. Define refractive index. Discuss the principle and working of Abbe's refractometer. 3 c. Describe any one method to determine depression in freezing point as a colligative 4 property. OR c. With the help of diagram, discuss the relationship between elevation of b. p. and lowering of vapor pressure.

Q.P. Code :27542

5.	a.	Write a note on polymorphism.	202
	b.	What is osmosis? Explain Berkeley and Hartley's method for measurement of osmotic	2
		pressure.	10
	c.	Explain Hess's law of constant heat summation.	5 10
			300
	c.	Define the following:	
		i) Heat of solution	770
		ii) Heat of formation	E.
		iii) Heat of combustion	
6.	a.	Calculate the pressure exerted by 1.00 mole of methane (CH ₄) in a 250 ml container at 300k	3
		using Van der Waals equation.	
		$a = 2.253 L^2 atm/mol^2$	
		b = 0.0428 L/mol	
		$R = 0.0821 L atm K^{-1} / mol$	
	b.	Write a short note on Steam distillation.	3
	c.	Write a note on Gibb's free energy.	3
	d.	State the postulates of Arrhenius theory of electrolytic dissociation.	2
