| | | [arks:80] | |-----|---|---| | | Please check whether you have got the right question paper. 1. All questions are compulsory. 2. Figures to the right indicate full marks. | | | Q.1 | a. What are Vander Waal's intermolecular forces. b. Define the terms vapor pressure and boiling point. c. Define additive and colligative properties with examples. d. State phase rule and explain degrees of freedom. e. How do pressure and temperature affect the solubility of gases in liquids? f. Differentiate between strong and weak electrolytes. g. Calculate the pH of; i. 0.05 M NaOH and, ii., 0.0005 M HCl h. Define the terms surface tension and surface free energy. i. Explain the terms wetting and contact angle. | 2
2
2
2
2
2
2
2
2
2
2 | | Q.2 | j. Define the terms dynamic viscosity and viscoelasticity. a. What are ideal and real gases? One mole of diethyl ether occupies 15 liters at 227 Calculate the pressure if Van der Waal's constants for diethyl ether are a = 17.38 atm.1it⁻² mol⁻², and b = 0.134 lit.mol⁻¹. (Given: R 0.0821lit.atm.K⁻¹ mol⁻¹) | 2
V°C. 4 | | | b. What are isotonic solutions? Explain any one class I method to adjust tonicity.c. Explain the effect of temperature on partial miscibility of liquids with suitable example. | 4
ample. 4 | | Q.3 | a. What is optical rotation? Explain the working of polarimeter. b. What is buffer capacity? Write a note on buffers used in pharmaceutical system. c. Write a note on surface active agents. If the saponification value and acid value of surfactant are 55 and 70.2 respectively, calculate its HLB. Also comment on the n of the surfactant. | | | Q.4 | a. Define Raoult's law and differentiate between ideal and real solutions. OR Write a on azeotropic mixtures. b. State and explain Distribution Law. Mention the modifications of the law for weal electrolytes. c. Derive Henderson Hasselbalch equation for a buffer comprising acetic acid and so acetate. | k 4 | | Q.5 | a. What is polymorphism? With suitable examples explain pharmaceutical significant polymorphs and amorphous solids. b. Define adsorption isotherm. Derive equation for Langmuir adsorption isotherm. c. Draw rheograms for non-newtonian systems and explain any one in detail. OR W do you understand by thixotropy? State its significance. | 4 | | Q.6 | a. Write a note on liquid crystalline state.b. Enlist methods to determine surface tension and explain any one in detail.c. What are the different viscometers available to measure viscosity of newtonian an non-newtonian liquids? Explain the principle and working of any one. | 4
4
d 4 | *********